The cometary-ISM link in the light of the Rosetta mission.

E. Quirico¹, P. Beck¹, L. Bonal¹, B. Schmitt¹, A. Faure¹ and P. Hily-Blant¹.

¹ IPAG, Université Grenoble Alpes/CNRS, CS 40700, 38058 Grenoble Cedex 9, France

The ESA Rosetta spacecraft has been orbiting comet 67P/Churyumov-Gerasimenko (67P/CG) since July 2014, and will execute its final operation by a tentative landing on 30 September 2016. The Philae lander touched down the surface on 12 November 2014 after two bounces, and finally remains wedged into a crack of a rugged terrain. The instruments onboard Philae could collect data during around 56 hours after the touch-down, while instruments onboard the orbiter have been continuously operating during the whole mission. The Rosetta mission is the first rendez-vous mission targeting a comet. It has provided a wealth of unprecedented data regarding bulk and surface composition, surface topography and morphology, and a comprehensive monitoring of the cometary activity including gas composition and dust production. This presentation will review the main results provided by this mission, outlining the breakthrough with earlier missions and the issue of the cometary-ISM links. Some prospective aspects regarding future missions will be addressed as well.